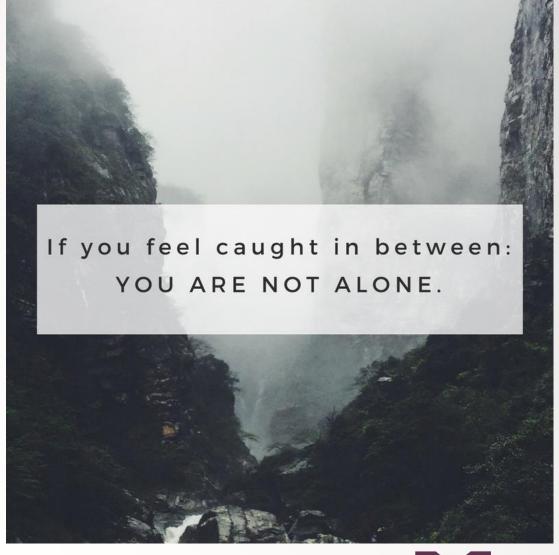
Vents, Trachs, Decannulation & Everything In Between

Sarah Messerli, MS, CCC-SLP, CBIS Cheryl Wagoner, MS, CCC-SLP, BCS-S, CBIS

Financial Disclosure

- Non-financial No relevant financial relationship exists
- Speech Language Pathologist, Inpatient Clinical Director at Madonna Rehabilitation Hospitals
- Speech Language Pathologist, Inpatient Therapy Director at Madonna Rehabilitation Hospitals
 - Clinical Consultant for Passy-Muir



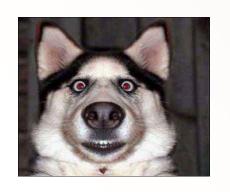
Objectives

- Review ventilator settings and clinical benefits of early intervention, including use of the Passy Muir Valve© for tracheostomized adult and pediatric patients
- Describe the assessment process for patients requiring mechanical ventilation
- Identify multidisciplinary issues associated with the tracheostomized and ventilator dependent patient
- Describe treatment techniques for improved outcomes with the tracheostomized and ventilator dependent patients

Now You Can[®].

Audience Poll

Clinical Years of Experience?



Audience Poll

Trach and Vent Experience?ScaryJust Do It

Comfortable

Audience Poll

When do you treat trach and vent patients?

Immediately/Daily

When they are discharged to another facility

Wait until off the vent

Ventilator Modes

- Synchronized
 Intermittent Mechanical
 Vent with pressure
 support (SIMV w/ PS)
- 2. Assist Control (AC)
- 3. Pressure Regulated Volume Control(PRVC)

- 4. Continuous PositiveAirway Pressure /Pressure Support (CPAP / PS)
- 5. Bi-level Positive Airway Pressure (BiPAP)
- 6. Pressure Support Mode(PS)

Pressure and Volume Relationship

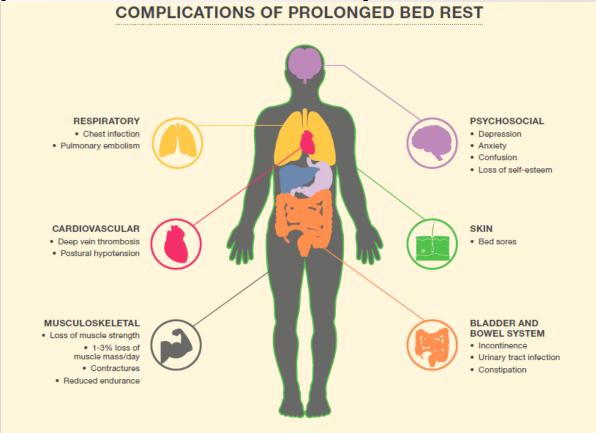
- Volume ventilation: ventilator delivers the pre-set Tidal Volume (V_T)
 - Volume is a constant
- Pressure Ventilation: ventilator delivers a pre-set pressure
 - volume can vary depending on lung compliance/resistance. Pressure is a constant, volume may be variable.
- The higher the pressure...the sicker the lung

Alarm Settings – Safe Practice

- Familiarize yourself with alarms
 - Patient safety
 - Team collaboration
- Low exhaled V_T and V_E alarms
- Low pressure alarm Set 5 to 10cm below PIP
- High pressure alarm Set 10cm above PIP
- High respiratory rate 10 or 15 above baseline

Rehabilitation Hospital

WHY

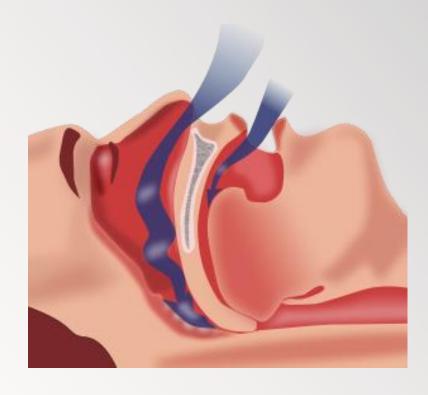

"If you do nothing, you will improve nothing."

"Things can get worse as you wait for the patient to get better."

Dr. Lori Burkhead-Morgan

Negative Effects of Bed Restow You Can. Importance for Early Intervention

https://www.healthhub.sg/live-healthy/1365/why-bed-rest-often-isnt-best


Griffiths et al. Nutrition 1995: 11:428-432

2. De Jonghe et al. CCM 2000; S309-315

Upper Airway Assessment Now You Can.

- 1. Decide Candidacy
- 2. Take note of initial Tidal volume (V_T) and Exhaled V_T
- 3. Take note of initial O2, HR levels
- 4. Deflate Cuff
- 5. Determine Airway Patency
- 6. Place one way valve (RT)
- 7. All tidal volume will come out of the mouth and nose now
- 8. Listen to vocal quality and intensity: Quiet or soft? Breathy, hoarse?
- 9. Observe and Monitor: Chest volume expansion, muscle use
- 10.Start Intervening

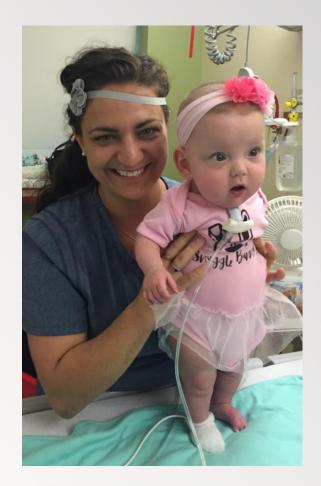
"STOP" Criteria

- Sustained HR ↑ > 20 beats/min above baseline or symptomatic bradycardia*
- PEEP ≥ 10 cmwp
- Sustained RR > 35 breaths/min
 - Peds sustained RR >10 breaths/min above baseline
- FiO2 ≥ 60% to maintain SpO2 > 90%
 - Peds FiO2 >50% to maintain SpO2 >92%
- RPD > 6 (Rating of Perceived Dyspnea)
- Discussion between RT/SLP regarding declining medical status

Assessment Tim

- Admitted following traumatic brain injury, car vs. bike
- Bilateral craniotomy
- Ventilator dependent
- NPO
- Deaf, non-verbal since birth
- Prior communication method Sign Language

Now You Can[®].



Now You Can®.

Assessment Marlys

- •6 month old, born at 25 weeks gestation
- Required extensive resuscitative efforts at birth, intubated
- Partial resection of 5th-75h right ribs, fungal osteomyelitis
- Attempted extubation/CPAP trials, trach placed

Assessment Marlys

- Trach type: Neonatal Bivona 3.5 cm
- Vent setting Spontaneous on admitNPO
- G-button, tolerating breast-milk feedings through tube
- Attempting nippling at breast once/day as tolerated

Marlys

- Pulmonary team involved from Children's
- Multidisciplinary effort
- Vent setting changed to Average Volumeassured pressure support (AVAPS)
- SLP and RT highly collaborative
- Vent weaning impacted PMV tolerance
- PMV modification

Now You Can®.

Goals

- Treatment goals are established following the assessment the same as for a patient without ventilator or tracheostomy tube, addressing:
 - Language
 - Cognition
 - Motor Speech
 - Dysphagia

Goals are not established for placement of valve or tolerance of valve

Do not require skilled SLP

The "In Between" (Therapy)

- Traditional interventions
- Creative Interventions:
 - Co-treatments
 - Patient Positioning
 - RespiratoryStrengthening
 - Kinesio tape
- Family Involvement

- Do Something
 - Sensory Stimulation
- Yes, you can eat on a vent!

Angel Eating Birthday Cake


Now You Can®.

Putting it into practice Now You Can.

- Speech Pathologist and Positioning?
 - Respiration & posture are linked!
- Every muscle originating or inserting on the trunk is a respiratory AND a postural muscle

Now You Can.

Positioning Variations

Co-treatments with PT or OT

Inspiratory and Expiratory

Now You Can.

Muscle Trainers

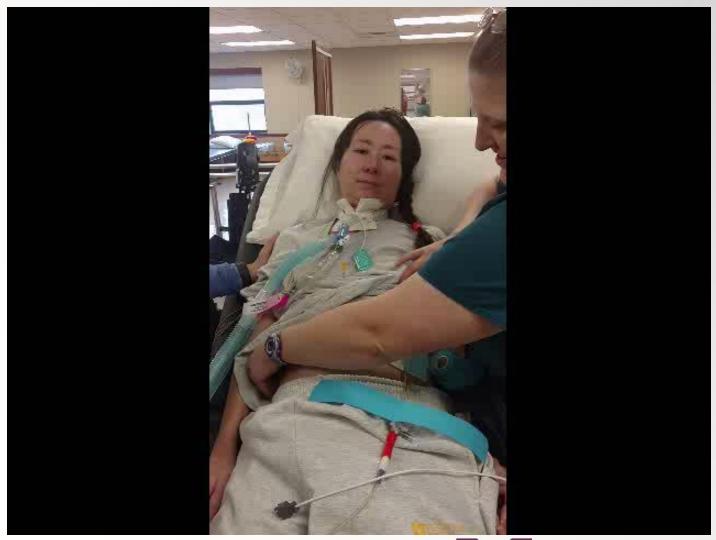
https://talktools.com/products/the-breather?variant=32526511113

<u>Aspire Products Expiratory Muscle Strength Trainers - Expiratory Muscl — Grayline Medical</u>

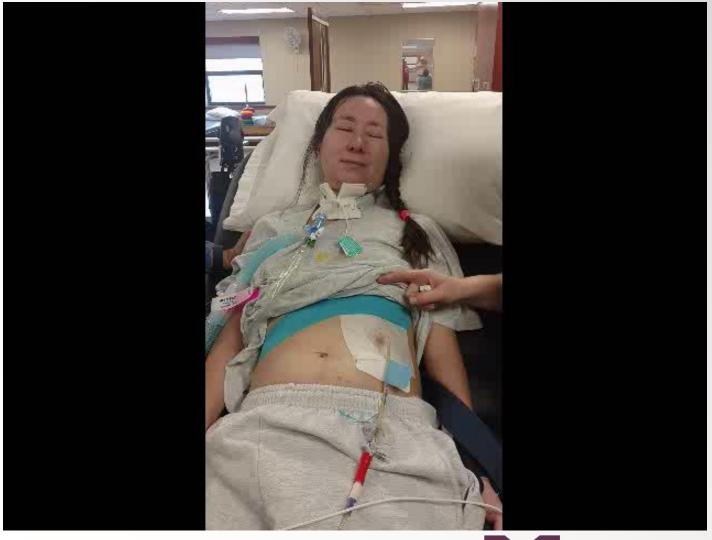
Treatment Rylee

- 12 years old; Hit by car moving at Hwy speeds while on bicycle
- Closed head injury, intraventricular hemorrhage; left leg below the knee amputation
- Rancho Los Amigos level III IV
- Trach placed on 5/13

Treatment Rylee


- Tolerating PMV on evaluation day with RT and Speech
- Cognition/agitation
- Initial concerns with heart rate
- Decannulation on 6/18

Treatment Yuki


Now You Can[®].

Treatment Yuki

Now You Can®.

Genevieve Sings!

Questions??

Different approaches??

References

- Brahmbhatt N, Murugan R, Milbrandt E. "Early mobilization improves functional outcomes in critically ill patients." *Critical Care*. 2010; 14: 321.
- Burkhead Morgan, Lori. "Early Intervention for the ICU Patient: Use It or Lose It."
 Passy-Muir. passy-muir.com/ceu2/handouts/early_intervention_vent.pdf.
- Burkhead Morgan, L. (2011). Exercise Principles: How much, How Often, How Intense? Principles of Exercise Physiology & Strength Training. Lecture presented at ASHA.
- De Jonghe, B., MD, Lacherade, J., MD, Sharshar, T., MD, PhD, & Outin, H., MD. (2009). Intensive care unit-acquired weakness: Risk factors and prevention. *Critical Care Medicine*, *37*(10), 309-315.
- Dean, Linda. "Ventilator Basics for the Non-Respiratory Therapist." Passy-Muir. Passy-muir.com/continuing_education. Webinar.
- Frownfelter D, Dean E. *Cardiovascular and Pulmonary Physical Therapy Evidence and Practice*, 4th Ed. St. Louis: Mosby Elsevier; 2006.

References

- Griffiths et al. (1995). Effect of Passive Stretching on the Wasting of Muscle in the Critically III. *Nutrition*, (11), 428-432.
- Martin D, Smith B, Davenport P, et al. "Inspiratory muscle strength training improves weaning outcome in failure to wean patients: randomized trial." Critical Care. 2011; 15.
- Massery, Mary. "If You Can't Breathe, You Can't Function." CEU Course, 16-19 Mar.
 2012, Lincoln, Madonna Rehabiliation Hospital.
- Massery M, Hagins M, Stafford R, Moerchen V, Hodges PW. "Effect of airway control by glottal structures on postural stability." *Journal of Applied Physiology*. Aug 2013; 115(4):483-490.
- Sprague SS, and PD Hopkins. "Use of Inspriatory Strength Training to Wean Six Patients Who Were Ventilator-Dependent." *Physical Therapy*, no. 83, Feb. 2003, pp. 171–181.

